Numerical analysis of heat and mass transfer through beds of spherical and non-spherical elements

نویسندگان

چکیده

Abstract Many issues related to mass and heat transfer through beds of granular materials are still not fully understood. In this work, non-isothermal turbulent flow is analysed within layers spherical non-spherical elements. We apply a volume penalization (VP) approach formulated in the framework an immersed boundary technique (IB) on Cartesian computational meshes. It allows modelling flows around solid objects with almost arbitrarily complex shapes any form contact. The validation solution accuracy performed against ANSYS Fluent simulations using body-fitted meshes experimental literature data. shows capability IB-VP for geometries. main research focuses comparison influence various types particles their temperature vorticity, turbulence level pressure drop inside behind bed. particular, we analyse how shape affects efficiency different conditions. obtained results reveal occurrence very structures (recirculation stagnation regions) beds. Comparison also point out preferred configurations

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Fourier Heat Transfer Analysis of Functionally Graded Spherical Shells under Convection-Radiation Conditions

Non-Fourier heat transfer analysis of functionally graded (FG) spherical shells subjected to the radiative-convective boundary conditions at their inner and outer surfaces are presented. It is assumed that the material properties have continuous variations along the thickness direction. The incremental differential quadrature method (IDQM) as an accurate and computationally efficient numerical ...

متن کامل

Numerical simulation of effect of non-spherical particle shape and bed size on hydrodynamics of packed beds

Fluid flow has a fundamental role in the performance of packed bed reactors. Some related issues, such as pressure drop, are strongly affected by porosity, so non-spherical particles are used in industry for enhancement or creation of the desired porosity. In this study, the effects of particle shape, size, and porosity of the bed on the hydrodynamics of packed beds are investigated with three ...

متن کامل

non-fourier heat transfer analysis of functionally graded spherical shells under convection-radiation conditions

non-fourier heat transfer analysis of functionally graded (fg) spherical shells subjected to the radiative-convective boundary conditions at their inner and outer surfaces are presented. it is assumed that the material properties have continuous variations along the thickness direction. the incremental differential quadrature method (idqm) as an accurate and computationally efficient numerical ...

متن کامل

Experimental Study of the Heat Transfer Enhancement in Concentric Tubes With Spherical and Pyramidal Protrusions

In the current research project, the thermal performance of a series of newly designed mixers has been investigated. Each mixer has two concentric cylinders comprising two annular slot flow channels around a solid cylindrical rod at the center. In each mixer, the first cylinder around the central solid rod has either spherical or pyramidal protrusions throughout the outer surface. It has been o...

متن کامل

Heat Transfer of Liquid/ Solid Fluidized Beds for Newtonian and Non-Newtonian Fluids

The excellent performance of fluidized bed heat exchangers is due to the interaction between particles and heat transfer surface and to the mixing effects in the viscous sublayer. In this paper, the results of experimental investigations on heat transfer for a wide range of Newtonian and non-Newtonian (shear-thinning power law) fluids are presented. New design equations have been developed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of physics

سال: 2022

ISSN: ['0022-3700', '1747-3721', '0368-3508', '1747-3713']

DOI: https://doi.org/10.1088/1742-6596/2367/1/012012